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ABSTRACT

In the present work, we study the multipoint nonlocal boundary value problem for the
elliptic-parabolic equation. The well-posedness of this problem in H older spaces with a
weight is established. In applications, the coercivity inequalities for the solutions of
the multipoint mixed nonlocal boundary value problems for elliptic-parabolic equations
are obtained.
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1. INTRODUCTION

Methods of solutions of nonlocal boundary value problems for elliptic-
parabolic differential equations have been studied extensively by many
researchers (see Bazarov and Soltanov (1995), Ashyralyev and Soltanov (1995),
Ashyralyev (2006) and Ashyralyev and Gercek (2008)).

In the present paper, the multipoint nonlocal boundary value problem
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_d’u(t)

dt*

du(t)

+Au()=g(t) (0<t<),

—Au(t)=f(@) (-1=<t<0), 1)

J
u(l)=2aiu(>\i)+(p, 1< <--<x, =0

i=l

in a Hilbert space H with self-adjoint positive definite operator A is
considered under assumption

J
| <1. @)
i=1

We establish the well-posedness of multipoint nonlocal boundary value
problem in Holder spaces with a weight and coercivity inequalities in Holder
norms for solutions of nonlocal boundary value problems for eliptic-parabolic
equations are obtained.

2. WELL-POSEDNESS

Throughout the paper, H is a Hilbert space and A is a positive
definite self-adjoint operator with A> I for some 0>, >0, where I is

1
the identity operator. We denote B = A?. First of all, let us give some
lemmas that will be needed below.

Lemma 1. (Sobolevskii (1977)). The following estimates hold

o

HB"’e"B St‘“(gJ . 0<a<e, t>0,

H—H e

a o

HA%-'A sﬂ(-} , 0<a<e, t>0, 3)

H—H e

-1
H([—e‘”) H <M (J)
H—H

for some M (9)=0.
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Lemma 2. Assume that (2) holds. Then, the operator

B(I-¢™)+1+e™ - 2ZJ: o EY

i=1
has an inverse

-1
T :(B(I—e23)+l+e23 —22045”‘“}

i=1
and the following estimates are satisfied

1710 <M D). BT, < M(S). )

A function u(t) is called a solution of problem (1) if the following conditions
are satisfied:

(1) u(r)is twice continuously differentiable on the segment (0,1] and
continuously differentiable on the segment [—1,1],

(i) The element u(z) belongs to domain D(A) of A for all e [—1,1]
and the function Au(¢) is continuous on the segment [—1,1],

(iii) wu(r) satisfies the equations and the nonlocal boundary condition

(1).

A solution of problem (1) defined in this manner will henceforth be referred
as a solution of problem (1) in the space C(H)=C([-1,1],H) of all

continuous functions @(¢) defined on [-1,1] with values in H equipped

with the norm

||‘/’||C([—1,1],H) = max (1),

—1<r<1

Now, we will obtain the formula for solution of problem (1). It is known that
(see Krein (1966)) for smooth data of the problems

—u” Au(t) = , (0Lt <L)),
{u(t)+ u(t)=g(), (0<r<l) )

u0)=u,, u(l)=u,
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w'(@t)—Au(t)= f(t), (=1<t<0),
u(0) =u,,

(6)

there are unique solutions of problems (5), (6) and the following formulas
hold

u@y=(1-¢**)" [[(e*”-‘? —e Iy (T | ()
+(e 0" —e<’*'>3)(23)‘1j'(e<'~‘>3 —e ") g(s)ds
0
—(2B)™ j'(e““)B P ) g(s)ds, 0<r<l,
0
u(t)=e™ + je(”)A f(s)ds, —1<t<0. (8)
0

J
Using the condition M(1)=2051M(>\i)+(/7 and formulas (7), (8), we can
i=1

write

u(t) = (I 28 )—1 |:(eit8 B )uo n (e—(l—t)B B ):| )

i=1

J N
X {Z{O@e%“/&uo + Ieo‘_smf(s)ds] + (/)J
0
1
+(2B)—1J’(67<H)B _ ef<s+1)3) g(s)ds]
0
1
—(2B)_1.[(e’(’”)3 - ef"_s‘g) g(s)ds, 0<t<l1.
0

For u,, using the condition u’(0+)=Au(0)+ f(0) and formula (9), we
obtain the operator equation

AuO)+ fO) =(1-¢*) " [-B(I+¢2)u, (10)
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n J N
+2Be”” ZOJkeNAuo + z a J. eI F(8)ds + @
1 i %

+ ( [—e? )_1 e’

o —_—

1
(e—(l—x)B — e UtDB )g(s)ds + Ie"‘Bg(s)dS.
0

Since the operator

J
B(I-e™)+1+e? =2) e ® "
i=1
has an inverse

-1
T :[B(I—ew)+l+ew —22045”‘”“} :

i=l

for the solution of operator equation (10) we have the formula

»N
u,=T|e” {22 ai.[e(N_S)Af(s)ds (11)

i=1 0

1

+J'B—1 [e(lx)Az _e<s+1)A2J g(s)ds]+2eg¢]

0

1
+(1-¢?")TB™ {— £(0)+ j et g(s)ds].
0

Hence, for the solution of the nonlocal boundary value problem (1), we
have formulas (7), (8) and (11).

For ae (0,1), let Cgfl([—l,l],H), Cgfl([O,l],H), and Cgfl([—l,O],H) denote
the Banach spaces obtained by the completion of the set of all smooth
H —valued function ¢(t) defined respectively on [—1,1], [0,1] and [-1,0]
with the norms

0%|lot+7) - )
”(p"C(’)’fl([—l,l],H) = "‘/’HC([—LH,H) + sup p H

—I<t<t+7<0 T
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(1-0)"@+0)"|pt +7) - 00)|

+ sup

O<t<t+7<1 ¢
~ (1= +0)%| ot + 1) - 9(0)|,
”(/’"cgfl([o,l],H )T ”(/’HC([o,l],H )T P - ’
(0|l +7)— p(0)]
”(/’”cg([—LOJ,H) =|Ale-ro1.0 oS - ~

Here, C([a,b],H) stands for the Banach space of all continuous
functions @(¢) defined on [a,b] with values in H equipped with the
norm

”(/’HC([a,h],H) = 22?;,‘]”(/’0)"11 :
We say that problem (1) is well-posed in C(H), if there exists a unique
solution u(t) in C(H) of problem (1) for any g(t)e C([0,1],H),
f®e C(-1,0l,H) and ¢@e D(A) and also the following coercivity
inequality is satisfied

/|

u 12)

”u””C([O,l],H) Tl leq-1018) +||A”||C(H>

<M D'g”C([O,l],H) +||f||C([—l,0],H) + ”A(/’“H }
where M is independent of ¢, f(¢) and g(z).

Problem (1) is not well-posed in C(H) (Ashyralyev and Soltanov

(1995)). The well-posedness of boundary value problem (1) can be
established if one considers this problem in certain spaces F(H) of

smooth H -valued functions on [—1,1].

A function u(?) is said to be a solution of problem (1) in F(H), if
it is a solution of this problem in C(H) and the functions
u’(t)(tel0,1]), u'(t)(te[-11]) and Au(t)(te[-11]) belong to F(H).

As in the case of the space C(H), we say that problem (1) is well-
posed in F(H), if the following coercivity inequality is satisfied
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/|

+||u

e (13)

/’”F([O,l],H) F(-101,H) +||Au||F(H)

=M D'g”F([O,l],H) + "f”F([—l,O],H) +||A(/’”H }’

where M does not depend on @, f(¢) and g(¢).

If we set F(H), equal to Cg,(H)=Cg,([-11],H) (0<a<1) then we can
establish our main theorem.
Theorem 1. Suppose @€ D(A). Then, boundary value problem (1) is

well-posed in the Holder space Cg (H) and the following coercivity
inequality holds

(14)

/|
u

u

””cgfl([o,l],H) e lleg 1018 +”A””c(§’fl(H)

1

<M (5) {m [”f les-ron +eles, qoum } +[agl,, }

Here, M (0) is independent of f(¢), g(t) and ¢.

Proof. Coercivity inequality (14) is based on the estimate

| M(5)
u Cé”([—l,O],H)+||Au||cé”([—l,0],H)_mufncg([_l’o]ﬂ)+M +||A“0||H (15)
M ()
< iz lescronan M 4wl

for the solution of inverse Cauchy problem (6) and on the estimate

” M (9)
([ "Cgfl([o,l],H) +||A“||c&l([o,1],H) Sm"g ”c&l([o,u,H) (16)
+M (6) [”AMOHH +[Au, "H]
for the solution of boundary value problem (5), and on the estimates
4, <3O g opm Vel qonam +laghy |- A
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M (9)

[l < e

W legronm el qonn |+ @lagl, a8)

for the solution of boundary value problem (1). Estimates (15), (16)
were established in Sobolevskii (1977). Let us obtain estimates (17),
(18). Applying formulas (7), (8), and (11), we get

J 0
Auy=2Te " Y o [ AP (f ()= FON))ds (19)
N

i=l

1 1
+Te ™| [ Be " (g(5)= g(D)ds+ [ B (g(s)— g(0)) ds
0 0

1 L
+2Te " Ap+(1—¢?#)T J' Be™ (g(s)— g(0))ds
0

+2Te*3iak (M =1) 0

k=1
+T(e’B —e?® )g(l) +T(I +2¢7F —2e7F P )g(O)
+TB(e?" = 1) f(O)=J,+ Ty + T3+, + s+,

where

J N
1 =2Te" Y o [ A4 (f ()= fOv))ds +2Te ™ Ag,

i=l 0

1 1
Jy=Te”| [Be ™" (g(5)= g()ds + [ Be ™" (g(5)= g(0))ds |,
0 0

1

J, :(I—e’w)T.[Be"‘B (g(s)—g(0))ds,

0
Jy= 2Te’BZJ:05i (eNA —I)f(>\,»),
i=1
Js=T(e"=e ) g +T(1+2e7" =2 ™) g (0),
Jo=TB(e™" =1)(0),
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i=l

J J 0
Ay =) e Aug+ o j AN (f ()= fFON))ds (20)
i=1 N
J
+Y @ (I-e"") fOy) + Ap=K, + K, +K;,
i=1

where
J J 0
K, = Z%eMAMo, K,= Z% .[ Ae! (f()=FON))ds,
i=1 i=1 N

J

K=Y o (1=e"") fOv) + Ag.

i=1

First, we obtain (17). Let us estimate norm of J, for k =1,---,6 separately

to establish the estimate for norm of (19). Using the triangle inequality,
assumption (2), estimates (3), (4), and the definition of the norm of the space

Cy([-1,0],H), we obtain

7 0
AP P 22 Joi J e, lr = r o0l ds

S P o B V. PR G| e v P

Let us estimate the norm of J,. Using the triangle inequality, estimates (3),

(4), and the definition of the norm of the space Cgf \([0,1], H), we get

1
ol <8 [l ], s 0= 0, s
0

1
BTl [l le -2 O s
0

SMz(é‘)”g

C§ (10,11, H)

1
<M,(5) J' [(1-9)% +5] ds|g e o)
0

We shall now estimate the norm of J,. From the triangle inequality,

estimates (3), (4) and the definition of the norm of the space Cgf ([0,11, H)
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it follows that

1
sk <{1+ e, BTN [
0

e—SB

o 186 =8O, ds

< M3(5)”g

C§,(10.11.H)

1
o
< M3(5).[S ds||g C&(01LH) "
0

Now, we will estimate the norm of J,.Using the triangle inequality,

assumption (2), the definition of the norm of the space Cy ([-1,0],H) and
estimates (3), (4), we obtain

TR P R O L R W P

<M, (8) max | f ()], <M, ()| f

—1<t<0

Cy(-1.01.H) "

It follows from the triangle inequality, the definition of the norm of
Cg,([0,1],H) and estimates (3), (4) that

2 e 1 P T O PG

(122 e e

< M(8)max|[g(1)],, <M5(S)|g

0<t<l1

C§(0.11L.H)

Finally, using estimates (3), (4), the definition of the norm of the space
Cy([-1,0],H), we get

P P (R O L
<M (&) max £ (1), <M ()| f

Cy(-1.01.H) "

Hence, combining the estimates for the norm of J,, k=1,---,6, we obtain
7).

Second, let us obtain (18). Now, let us estimate norm of K,,K, and K,
separately to establish the estimate for the norm of (20).
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From the triangle inequality, assumption (2) and estimates (3), (17) it
follows that

J
IKill,; < Z|0‘i|ue>\'AHH_>H | Aug
i=1

<[], <0,(8)| [

C5(0.1,H) +||f Gy (-1.01.H) +"A¢”H }
Now, we will estimate for the norm of K,. Using the triangle inequality,
assumption (2), and estimates (3), (4), we get

7 0
I&2l < Z}I%I Jlae™],, ., 0r@=roN, ds
= N

(s—>)%ds ”

t M,(5)
SMZ(J);[ (S—Xi)(_s)a < : ||

C(?([—I,OLH) - a(l — a)

Cy(-1.0L.H) "

Finally, using the triangle inequality, assumption (2), estimate (3), and the

definition of the norm of the space Cg’ ([-1,0],H), we obtain

J
1Kl < ;I%IHI =L Ol +lAdd,

<11, max £ v, +|46l, <0

C§ (1-1,01.H) +||A(/’"H :
Thus, combining these three estimates for the norms of K|,K, and K;, we

obtain (18). This concludes the proof of the Theorem 2.

3. APPLICATIONS

Now, let us consider the applications of Theorem 1. First, the
multipoint nonlocal boundary value problem for elliptic-parabolic equation
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—u, —(a(x)u,), +ou=g(,x), 0<t<l, O<x<l,
u +(a(xu,) —ou=f(tx), —l<t<l, 0<x<l,
u(t,0)=u(t,1), u (t,0)=u (1), -1<t<l1,

J J (21)
w(l,x) =Y qulxn, x)+9(x), Y || <1,

i=1 i=1
IS <N < N <N, S0, 0 x <,
u(0+,x) =u(0—,x), u,(0+,x)=u,(0-,x), 0<x<1

is considered. Problem (21) has a unique smooth solution u(¢,x) for the
smooth g(¢,x)(t€[0,1],x€[0,1]), f(, x)(te[-1,0],x€[0,1]), a(x)=a>
0(xe (0,1)) functions and 6 =const > 0.

We introduce the Hilbert space L,[0,1] of all the square integrable
functions defined on [0,1], W21 [0,1] and W22[0,1] equipped with the norms

X 12
oo =160s o [ floi? dxj ,
0

| 2,
W2t = ”q)"Lz[o,l] + [}[|¢x|2 dxj + [}[|¢7xx|2 dx}

This allows us to reduce mixed prob;lem (21) to the nonlocal boundary
value problem (1) Hilbert space H =L,[0,1] with a self-adjoint positive
definite operator A defined by (21).

12

|

Theorem 2. The solutions of nonlocal boundary value problem (21) satisfy
the coercivity inequality

e, "cgfl (10.11.L,[0.1]) +||”r||cg([—1,01,12[0,1]) +”””c&l([—l,u,wg[o,u)
M (5)
Tal-a)

A

["g ”cgfl([o,u,l,z[o,u) +|r ||cg([—1,01,1,2[0,1]) } +M(9) ||‘/’||W22[0,1] :

Here, M (0) does not depend on f(¢,x), g(t,x) and @(x).
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The proof of Theorem 2 is based on the abstract Theorem 1 and the
symmetry properties of the space operator generated by problem (21).

Second, let Q be the unit open cube in the n-dimensional Eucledean
space R" (0<x, <1, 1<k <n) with boundary S, Q=QUS.

In [-1,1]xQ,the multipoint mixed boundary value problem for
multidimensional mixed equation

—u,, — Z(ar (x)uxr )x, =g(t,x), O<t<l, xeQ,
r=1

w+ Y (a,(ou, ), =f(t,x), -1<1<0, xeQ,
r=1
u(t,x)=0, xe§, —1<r<I, (22)
J J
u(Lx) =Y qulx.x)+@(x), Y || <L,
i=1 i=1

1SN <N < <ON <N 0,
u(0+,x) = u(0—,x), u,(0+,x)=u,(0-x), xeQ

is considered.

Here, a,(x) (xe Q), g(t,x) (r€ (0,1),xe Q) and f(t,x) (t€ (~1,0),xe Q)

are given smooth functions and a,(x)2a > 0.

We introduce the Hilbert space Lz(ﬁ) of all the square integrable

functions defined on Q, equipped with the norm

o], @ = Jj [ o[ ds s,

xeQ

And the Hilbert spaces W, (5), W22 (f_l) defined on Q, equipped with the
norms

2
dx, --dx,,

?.,

. =||¢4|1Q<9)+JJ S

xeQ =1
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H¢7h W2(©) z“q)h‘ljzh +\/I...XJQ; o, zdxl-..dxn
+\/I...XJQZ - 2dx1"'dxn‘

Problem (22) has a unique smooth solution u(¢,x) for the smooth
functions a,(x), g(,x) and f(¢,x). This allows us to reduce mixed
problem (22) to nonlocal boundary value problem (1) in Hilbert space
H :Lz(f_l) with a self-adjoint positive definite operator A defined by
(22).

Theorem 3. The solutions of nonlocal boundary value problem (22) satisfy
the coercivity inequality

it "cgfl (10.11.L, () +||”r||cg([—1,01,12(§)) +||”||c&1([—1,1],wz2(§))
< M (0)

“al-a ["g ”cgfl 10.11.L, Q) T |7 ”cg’ (1-101.L,(Q3)) } +M (6 )”‘/’ng(ﬁ) :

The proof of Theorem 3 is based on the abstract Theorem 1 and the
symmetry properties of the space operator generated by problem (22) and
the following theorem on the coercivity inequality for the solution of the

elliptic differential problem in L, (£2).

Theorem 4. (Sobolevskii (1975)). For the solution of the elliptic
differential problem

D (@, (u,), =a(x), xeQ, u(x)=0, xS
r=l1
the following coercivity inequality holds

>

r=1

L,(Q)) <M ”w”l,z(.Q)) :

u
XX,

Here M is independent of w(x).
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